字体:大 中 小
护眼
关灯
上一章
目录
下一页
第四章 战车登天技法(7) (第1/5页)
院子里升起了一团篝火。那修女捧着一本书,坐在门外的一块石头上,给围绕着她的孩子们讲故事。 艾拉在二楼默默地注视着他们,直到修女觉得天色太晚了让孩子们回房间休息,这期间孩子们的每一个动作,都透着对那位修女的喜爱。 如果这里不是亚伯拉罕正教会的教堂,而是七丘帝国的神庙,那些祭司们会收留赶路的人么?会收养被遗弃的儿童么?会让这些孩子们如此喜爱么? ——这种东西,应该还是看个人的吧? 艾拉甩了甩头,把刚刚出现在脑中的那种荒谬想法给甩了出去,然后掏出一叠纸来摆在桌子上。那上面是一些还没解决的几何问题。 其中一个是一条抛物线,一条线斜着切过它,与抛物线一同围成了一个弓形。戈特弗里德给艾拉的任务是计算这个弓形的面积。 艾拉想了想,以弓形的直边为底边,又在抛物线上选了一个点,一同连成了一个大三角形。然后以大三角形的另外两条边为底边,各自又选了抛物线上的一个点连成了两个小三角形。 艾拉凝视着这三个三角形。按戈特弗里德计算圆面积的方法,这些三角形如果不断绘制下去,它们的面积之和会越来越接近这个弓形的面积吧。 但是,这样绘制的三角形根据选点的不同,会有各种各样的大小,且无规律。如果要计算面积和,必须要制定一个统一的绘制规则。 艾拉叹了口气,把这张纸给撕了,重新画了一张。这一次,她把那根直线平行移动,直到切抛物线于一点。艾拉以这个点为顶点绘制了第一个大三角形。然后她用了同样的方法,绘制了下一级的两个三角形。 这样一来,问题立刻就变得清晰了。经过一段几何证明之后,艾拉发现这两个小三角形的面积和是大
上一章
目录
下一页